Santiswarup Singha

M. Sc.
University of Calcutta, Kolkata, India

Ph. D.
University of Calcutta, Kolkata, India

Past Affiliations Post Doctoral training
University of Calgary, Calgary, Canada


Research Interest

Application of nano-engineering principles for rational designing of the immunomodulatory nano-therapeutic platform.

Group Members

Tarandeep Singh Bansal

Summary of Research

Nanotechnology-based therapeutics have immense potential for fighting against a broad spectrum of diseases, including cancer and infectious diseases. The field of nanotechnology allied chemistry provides the tools for designing a diversified array of nanoparticles based on their sizes, shapes, engineered surface, chemical composition, and, most importantly, the nano-specific property. Harvesting the potential of nanotechnology to induce sustainable anti-tumor immune response is one of the prime interests of our research. Currently, monoclonal antibodies such as anti-cytotoxic T-lymphocyte-associated protein 4 (anti-CTLA4), programmed cell death protein 1(PD1), and/or PD1-ligand (PD1-L) therapy to block the immune checkpoint inhibitors is the promising and successful immunotherapy for cancer. In earlier research, we developed autoimmune disease-relevant peptide-major histocompatibility complex (p-MHC) coated nanoparticle to blunt autoimmune responses without compromising systemic immunity. This nanomedicine modulates the regulatory immune network by converting and expanding disease-specific T-regulatory type-1(T-reg) cells to prevent autoimmune diseases. Inspired by these scientific advancements, we are interested in developing the nanotherapeutic platform based on designing of artificial antigen-presenting cells (aAPCs) displaying and/or carrying optimized immune stimulatory molecules and empowering professional APCs by delivering stimulator of interferon genes (STING) agonist to present tumor-associated antigen (TAA). Additionally, using the nanotechnology platform, we will modulate the activity of the chaperone network of tumor cells to elicit tumor-specific effector T-cell response. We consider the multidisciplinary approach comprising of nanotechnology, biochemistry, and immunology to study the complex immunological responses for the rational designing of the nanotherapeutic platform.

Selected Publications

  • Serra, P.; Garabatos, N.; Singha, S.; Fandos, C.; Garnica, J.; Sole, P.; Parras, D.; Yamanouchi, J.; Blanco, J.; Tort, M.; Ortega, M.; Yang, Y.; Ellestad, K. K.; Santamaria, P., Increased yields and biological potency of knob-into-hole-based soluble MHC class II molecules. Nat Commun2019,10 (1), 4917.
  • Umeshappa, C. S.; Singha, S.; Blanco, J.; Shao, K.; Nanjundappa, R. H.; Yamanouchi, J.; Pares, A.; Serra, P.; Yang, Y.; Santamaria, P., Suppression of a broad spectrum of liver autoimmune pathologies by single peptide-MHC-based nanomedicines. Nat Commun2019,10 (1), 2150.
  • Singha, S.*; Shao, K.*; Ellestad, K. K.; Yang, Y.; Santamaria, P., Nanoparticles for Immune Stimulation Against Infection, Cancer, and Autoimmunity. ACS Nano2018,12 (11), 10621-10635.
  • Mukhopadhyay, A.; Basu, S.; Singha, S.; Patra, H. K., Inner-View of Nanomaterial Incited Protein Conformational Changes: Insights into Designable Interaction. Research (Wash D C)2018, 2018, 9712832.
  • Singha, S.*; Shao, K.*; Yang, Y.; Clemente-Casares, X.; Sole, P.; Clemente, A.; Blanco, J.; Dai, Q.; Song, F.; Liu, S. W.; Yamanouchi, J.; Umeshappa, C. S.; Nanjundappa, R. H.; Detampel, P.; Amrein, M.; Fandos, C.; Tanguay, R.; Newbigging, S.; Serra, P.; Khadra, A.; Chan, W. C. W.; Santamaria, P., Peptide-MHC-based nanomedicines for autoimmunity function as T-cell receptor microclustering devices. Nat Nanotechnol2017,12 (7), 701-710. Highlighted in Science Translational Medicine and Nature Reviews Materials
  • Clemente-Casares, X.; Blanco, J.*; Ambalavanan, P.*; Yamanouchi, J.*; Singha, S.*; Fandos, C.; Tsai, S.; Wang, J.; Garabatos, N.; Izquierdo, C.; Agrawal, S.; Keough, M. B.; Yong, V. W.; James, E.; Moore, A.; Yang, Y.; Stratmann, T.; Serra, P.; Santamaria, P., Expanding antigen-specific regulatory networks to treat autoimmunity. Nature2016, 530 (7591), 434-40. Highlighted in The New EnglandJournalof Medicine, Nature-Biotechnology and Nature Reviews Drug Discovery.
  • Shao, K.*; Singha, S.*; Clemente-Casares, X.; Tsai, S.; Yang, Y.; Santamaria, P., Nanoparticle-based immunotherapy for cancer. ACS Nano2015,9 (1), 16-30.
  • Ray, N.; Roy, S.; Singha, S.; Chandra, B.; Dasgupta, A. K.; Sarkar, A., Design of heat shock-resistant surfaces to prevent protein aggregation: Enhanced chaperone activity of immobilized alpha-Crystallin. Bioconjug Chem2014,25 (5), 888-95.
  • Singha, S.; Dasgupta, A. K.; Datta, H., Gold nanoparticle induces masking of amines and some therapeutic implications. J Nanosci Nanotechnol2011,11 (9), 7744-52.
  • Singha, S.; Datta, H.; Dasgupta, A. K., Size dependent chaperon properties of gold nanoparticles. J Nanosci Nanotechnol2010,10 (2), 826-32.
  • Singha, S.; Bhattacharya, J.; Datta, H.; Dasgupta, A. K., Anti-glycation activity of gold nanoparticles. Nanomedicine NBM2009,5 (1), 21-9.
  • Singha S.;Lahiri T.; Dasgupta AK.; Chakrabarti P., Structural Classification of Protein Using Surface Roughness Index.Online Journal of Bioinformatics 2006, 7 (2), 74-84
  • Roy, S.; Singha, S.; Bhattacharya, J.; Ghoshmoulick, R.; Dasgupta, A. K., A size dependent folding contour for cytochrome C. Biophys Chem2006,119 (1), 14-22.

* Equal Contribution

Patent :

 1. Singha S, Dasgupta AK. Light Energy Induced Stability of Biomaterials.(Pub. No. US 2011/0250670 A1, Pub. Date: Oct, 13,2011) (PCT/IB2010/001373)

Copyright © 2012 National Institute of Immunology. All Rights Reserved.

150 Years of Celebrating The Mahatma